Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan Yang, ${ }^{\text {a,b }}$ Fa-Yan Meng, ${ }^{\text {a }}$
Ming-Hua Zeng ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Guangxi Normal University, Guilin 541000, Guangxi, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Yulin Normal College, Yulin 537000, Guangxi, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zmhzsu@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.022$
$w R$ factor $=0.060$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

catena-Poly[[aquazinc(II)]- μ-2-carboxylatophenoxyacetato]

The $-\mathrm{OCH}_{2} \mathrm{CO}_{2}$ arm of the ligand in the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, uses the single-bond carboxyl O atom, as well as the ether O atom, to chelate to the Zn atom; the other $-\mathrm{CO}_{2}$ arm bridges adjacent Zn atoms into a helical chain that propagates by means of a 2_{1} screw axis. The $-\mathrm{OCH}_{2} \mathrm{CO}_{2}$ arm features distinct single- and double-bond $\mathrm{C}-\mathrm{O}$ distances; in the other $-\mathrm{CO}_{2}$ arm, the $\mathrm{C}-\mathrm{O}$ distances are interpreted in terms of a delocalized carboxyl group. The coordination about zinc is completed by a water molecule, resulting a distorted ZnO_{5} square-pyramidal arrangement in which the apical position is occupied by water.

Comment

A number of divalent first-row transition metal derivatives of the isomeric carboxyphenoxyacetic acids have been crystallographically authenticated. Derivatives of the 4 -isomer include the hydrated Mn (Gu et al., 2004; Huo et al., 2005), Co (Kennard et al., 1984), Ni (Chen et al., 2004; Kennard et al., 1984) and Cu (Gao, Yue et al., 2004) complexes; the derivatives of the 3 -isomer, the $\mathrm{Co}(\mathrm{Li}$ et al., 2004) and Ni (Gao, Liu et al., 2004) complexes, also exist as water-coordinated compounds. Only one derivative of the 2 -isomer, a tetraaquacopper compound, has been reported (Kennard et al., 1986).

(I)

The present monoaqua derivative of zinc, (I), represents a variation on the hitherto reported motifs as the metal atom is chelated by the oxyacetate $-\mathrm{OCH}_{2} \mathrm{CO}_{2}$ arm of the $\mathrm{O}_{2} \mathrm{C}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{2}$ dianion (Fig. 1), the ether O atom (O3) to zinc dative interaction being surprisingly short at 2.268 (1) \AA. The $-\mathrm{OCH}_{2} \mathrm{CO}_{2}$ and $-\mathrm{CO}_{2}$ groups both engage in bridging; however, whereas the first of these features long and short C O distances, the two $\mathrm{C}-\mathrm{O}$ bond lengths in the latter group are indistinguishable from each other (Table 1). This ligandbonding motif results in a polymeric chain propagating along [010] (Fig. 2). The Zn atom is displaced out of the square plane formed by atoms O1, O2 (see Table 1 for symmetry code), O3 and O 5 by $0.437(1)^{\circ}$ in the direction of the apical water O

Received 18 April 2005 Accepted 21 April 2005 Online 27 April 2005

Figure 1
View of a portion of (I), showing 50% displacements ellipsoids (arbitrary spheres for the H atoms). The heavy dashed lines indicate bonds to adjacent Zn atoms in the chain. The symmetry code is as in Table 1.

Figure 2
Detail of (I) showing a segment of the helical carboxylate-bridged chain motif.
atom ($\mathrm{O} 1 w$). Two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link adjacent chains into a layered structure.

Experimental

Zinc nitrate hexahydrate ($0.149 \mathrm{~g}, 0.5 \mathrm{mmol}$) and 2-carboxyphenoxyacetic acid $(0.196 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in a mixture of ethanol (3 ml) and water (15 ml). The solution was placed in a 23 ml Teflon-lined stainless steel hydrothermal bomb which was heated at 433 K for 120 h . The cooled mixture yielded colorless crystals of (I); these were washed with water and then dried in air (the yield was about 70%).

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=277.52$
Monoclinic, $P 2_{1} / n$
$a=8.157$ (1) \AA
$b=6.7568$ (8) \AA
$c=17.451$ (2) \AA
$\beta=94.697(2)^{\circ}$
$V=958.7(2) \AA^{3}$
$Z=4$
Data collection
Bruker SMART 1K CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.331, T_{\text {max }}=0.487$
5672 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.060$
$S=1.02$
2095 reflections
153 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.923 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 853
reflections
$\theta=2.3-27.1^{\circ}$
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.50 \times 0.36 \times 0.28 \mathrm{~mm}$

2095 independent reflections
1880 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-8 \rightarrow 6$
$l=-22 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0304 P)^{2}\right. \\
& \quad+0.4871 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.961(1)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.257(2)$
$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$1.969(1)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.256(2)$
$\mathrm{Zn} 1-\mathrm{O} 3$	$2.268(1)$	$\mathrm{C} 9-\mathrm{O} 4$	$1.232(2)$
$\mathrm{Zn} 1-\mathrm{O} 5$	$1.996(1)$	$\mathrm{C} 9-\mathrm{O} 5$	$1.267(2)$
$\mathrm{Zn} 1-\mathrm{O} 1 w$	$1.997(1)$		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$97.92(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 5$	$97.64(6)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3$	$80.15(5)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1 w$	$104.49(6)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 5$	$153.75(6)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 5$	$75.17(5)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1 w$	$93.88(7)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 1 w$	$109.24(6)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 3$	$146.27(6)$	$\mathrm{O} 5-\mathrm{Zn} 1-\mathrm{O} 1 w$	$102.50(6)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $w-\mathrm{H} 1 w 1 \cdots \mathrm{O}^{\text {ii }}$	$0.85(1)$	$1.80(1)$	$2.644(2)$	$176(3)$
O1 $w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.84(1)$	$1.95(1)$	$2.776(2)$	$166(2)$

Symmetry codes: (ii) $x, y-1, z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

The carbon-bound H atoms were positioned geometrically ($\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$) and refined as riding with the constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier) applied. The water H atoms were located in a difference Fourier map and were freely refined.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

metal-organic papers

We thank the Guangxi Normal University and the University of Malaya for supporting this study.

References

Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, P.-G., Gu, C.-S., Huo, L.-H., Gao, S. \& Zhao, J.-G. (2004). Heilongjiang Daxue Ziran Kexue Xuebao, 21, 131-134. (In Chinese.)
Gao, S., Liu, J.-R., Gu, C.-S. \& Huo, L.-H. (2004). Acta Cryst. E60, m22-m23. Gao, S., Yue, Y.-M., Ma, D.-S., Gao, J.-S. \& Yan, P.-F. (2004). Chin. J. Struct. Chem. 23, 825-828.

Gu, C.-S., Gao, S., Huo, L.-H., Zhao, Z.-B., Zhao, H. \& Zhao, J.-G. (2004). Chin. J. Inorg. Chem. 20, 853-856.
Huo, L.-H., Shan, G., Liu, J.-W., Zhao, C.-S., Zhao, H. \& Zhao, J.-G. (2005). Chin. J. Struct. Chem. 24, 334-338.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennard, C. H. L., Smith, G. \& O'Reilly, E. J. (1986). Inorg. Chim. Acta, 112, 47-51.
Kennard, C. H. L., Smith, G., O’Reilly, E. J. \& Manoharan, P. T. (1984). Inorg. Chim. Acta, 81, 35-40.
Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. \& Huo, L.-H. (2004). Chin. J. Struct. Chem. 23, 835-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography

